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SUMMARY

A study has been made of minimum-fuel transfer and rendezvous between
nelghboring low-eccentricity orbits by power-limited rocket. This study in-
cludes and extends previous work wherein only the case of transfer between
circular orbits was considered. As before, the analysis is based on the
assumption that only small deviations from an initial orbit are allowed.
Complete analytical solutions are obtained in three different sets of variables:
(1) rotating rectangular coordinates, (2) rotating spherical coordinates, and
(3) Lagrange's planetary variables. In addition to the determination of
optimal transfer and rendezvous trajectories in three dimensions, synthesis
of the optimal controls is also carried out in each case. The guidance coeffi-
cients resulting from the control synthesis are presented both in graphical
form and in equation form suitable for use in guldance applications.

The use of an intermediate reference orbit is found to be a powerful
method of improving the accuracy of the linearized theory. Results for
circular, coplanar earth-Venus and earth-Mars transfers are compared with A
exact solutions. The linear theory is shown to provide a very good co;rela—l
tion with exact data for all trip times of interest.

CONCLUSIONS

1. Explicit solutions are obtainable for minimum-fuel transfer and
rendezvous between neighboring low-eccentricity orbits by power-limited
rockets. These solutions include closed form expressions for the optimum
thrust vector, the optirum trajectory, and the minimum required fuel con-
sumption in terms of boundary conditions and trip time.
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2. Synthesis of the optimal control has also been carried out for both
transfer and rendezvous between any orbit and a neighboring, low-eccentricity
orbit. Guidance coefficients for each case can be presented in terms of time
remaining to reach the target orbit.

3. Results for the case of coplanar circle-to-circle transfer between
earth and Venus indicate that the linearized equations adequately predict the
actual motion, the optimal control, and the minimum fuel consumption. There
is, as yet, no numerical data to indicate that the rendezvous equations are
equally applicable to the planetary orbits. The failure of these equations
appears to be caused by the terms representing the angular motion.

RECOMMENDATIONS

The results of the linearized analysis for earth-Mars and earth-Venus
transfers are sufficiently promising to warrant further investigation into
higher-order theories. In particular, the "piecewise-linear" theory des-
cribed herein is a relatively straightforward application of the linearized
equations which should include at least some second-order effects on the
motion. It is recommended that this approach be pursued because a simple
second~order solution is highly desirable.

INTRODUCTION

It is characteristic of high-specific-impulse, low-thrust propulsion
systems that the source of power is separate from the thrust device itself.
Consequently, such propulsion systems are referred to as power-limited, since
thrust is restricted in magnitude by the output of the power supply, which is
in turn limited by the necessity of minimizing power supply weight.

The problem of transfer and rendezvous between neighboring orbits by a
power-limited rocket is of interest for two basic reasons. First of all, the
problem can be solved analytically, as was demonstrated in Refs. 1, 2, and 3,
provided that the thrust acceleration is not constrained in magnitude and
that the proper simplifying assumptions are made in the mathematical model
of the system. The analytic expressions thus obtained for the controls and
for the optimum trajectories then provide insight into more general problems
where the simplifying restrictions are lifted. Secondly, the solution to
this problem provides a lower bound to the performance requirements for low-
thrust orbital transfer and rendezvous.

It is interesting to note that if, for the same system model as has been
used herein, the thrust acceleration is assumed constant, analytic integration
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of the equations of motilon requires the evaluation of incomplete elliptic
integrals of the third kind (Ref. 4). Therefore,allowance for variable-thrust
acceleration is essential if simple analytic solutions are to be obtained.

ANALYTICAL METHOD

Description of the Mathematical Model

The phrase 'neighboring orbits", as defined here, requires that the
inclination between orbit planes be small and that the radial separation
between orbits be small relative to the semi-major axis of either orbit.

If it is further assumed that motion in the transfer orbit does not deviate
significantly from these neighboring orbits, linearization of the equations
of motion is permissible.

The analysis has been carried out in three sets of variables: (1) rotating
rectangular coordinates, (2) rotating spherical coordinates, and (3) Lagrange's
planetary variables. The rotating coordinates have been utilized previously
in Refs. 5, 6, and 7, while the planetary variables were applied to an orbit
transfer problem in Ref. L.

The rotating coordinate systems are depicted in Figs. 1 and 2. Each
consists of an origin which revolves at satellite velocity in the initial
(interior) circular orbit and orthogonal coordinates measured from this
revolving origin. In the rectangular system of Fig. 1, y' is a radial
dimension, x' is measured tangent to the initial orbit at the origin, and
z' 1s a coordinate which is out of the plane of the initial orbit and is
normal to both x' and y'.

In Fig. 2, the spherical system is composed of a radial coordinate y,
an arc x, measured circumferentially from the origin, and another arc z,
which 1s orthogonal to the x-y plane.

The Lagrange planetary variables, which are derived from the elements of
an elliptic orbit and are used in the standard variation-of-parameters
equations of celestial mechanics (Ref. 8), are convenient because they elimi-
nate the necessity of treating singularities for zero eccentricity and zero
inclination in these equations. As they are used in this study, the planetary
variables consist of the nondimensionalized semi-major axis X, = a/ao, a
circumferential distance component, x,, and the following conmbinations of
the remaining orbital elements:

X; = e sin w

Xz = e cOs W . (1)
Xz = sin i sin Q

Xs = sin 1 cos Q
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where e is eccentricity, @ is the longitude of peri-apsis, i is orbital
inclination, and Q is the longitude of the ascending node. The planetary
variables provide a simple means of introducing eccentricity into the termi-
nal orbits, and the form of the state equations using these variables is
particularly simple in the present problem. However, in a practical appli-
cation, they might be less desirable than the rotating coordinates because
the orbital elements cannot be directly measured.

In view of the foregoing considerations, eccentric terminal orbits have
been allowed only in the planetary variables in this study, while the analysis
in rotating reference frames is confined to circular terminal orbits.

It should be noted here that the three sets of variables are entirely
equivalent in that the equations of motion may be transformed directly from
one set to another by substitution. There are some differences in the required
linearizing assumptions which should be mentioned, however.

Consider the coordinate system depicted in Fig. 1, a rectangular system
with its origin fixed on the interior orbit (assumed to be the reference
orbit) in the x', y' plane. The mutually orthogonal coordinates x', y', and
z' form a triad that revolves with angular speed n, characteristic of the
reference orbit, so that motion in this frame of reference is relative to a
point on the reference orbit. The spherical coordinate system in Fig. 2 is
described by the arc x in the plane of the reference orbit, the arc z measured
normal to this plane, and a radial dimension y.

In order to linearize the equations of motion in the first system, it is
necessary to assume that excursions x', y', and z' from the origin be small
in comparison with the radius, r,, of the reference orbit. Motion is there-
fore constrained to a small sphere about the origin. No restrictions are
placed on the component velocities. In the rotating spherical system, only
the assumption of small component velocities will linearize the equations,
whereas the arc x is not limited. The resultant motion is constrained to
a torus about the reference orbit.

Since the linearized equations of motion are identical except for
differences in notation (Ref. 5), one can draw the conclusion that, if in
the spherical system the resultant motion does not involve large variations
in x, the velocity components may be large. In the present study, use of
the spherical system has been assumed throughout, and the results may be
extended according to the foregoing discussion.

In the case of the planetary variables, the linearizing assumptions
require that the difference in the semi-major axes of the terminal orbits
be small and that the eccentricity of the terminal orbits as well as the
eccentricity of the instantaneous transfer orbit be small. The implications
of these assumptions are similar to those for the rotating spherical system
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in that "fast" trajectories are allowed only when the linearizing assumptions
may be relaxed. On the other hand, fast trajectories are allowed in the
rectangular system because no limits are placed on the component velocities
in the linearizing process.

Analysis

The optimization problem is to derive the optimal control equation for
the minimum-fuel transfer or rendezvous of a power-limited rocket between
neighboring orbits in a given time. Mathematically, this requires minimi-
zation of the integral

te Te Te
J = J; (T/m)® at = J; (no/2) A® ar = j; fo (A) ar (2)

subject to constraints imposed by the equations of state which may be expressed
in the form

5{1 =1 (X: A) i=1, ... , n (3)

The control is the thrust acceleration vector, A, in the present case.

The problem is treated as a problem of Lagrange in the calculus of varia-
tions. In particular, Breakwell's formulation (Ref. 9) of this problem is
used because the linearized equations in the present case are particularly
well suited to this formulation.

If a fundamental function F is defined as

n
F=-f, +T Mf (%)
i=]1

the variational treatment requires satisfaction of Buler-Lagrange equations
in the following form as necessary conditions for the existence of an extremal
arc:

ay _ _F

ar A%y (5)
oF _

aa, = ©° (6)
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An additional necessary condition provided by the Pontryagin Maximum Principle
must also be satisfied to ensure that the stationary solution predicted by
the Euler equations is actually an extremum. The maximum principle, which
may be expressed as

F (x, M\, A¥) 2 F (x;, Ay, Ay) (7)

ensures that the stationary solution is an absolute maximum. Furthermore, it
has been shown (Ref. lO) that for a system where both the state variables and
the controls appear linearly in the state equations, the maximum principle

is also sufficient to ensure a minimum of the payoff, J. Since all cases in
the present analyses are linear in the controls and satisfy the maximm
principle, the optimum trajectories described herein are absolute extrema.

Due to the great number of equations involved, the variational analysis
is not described in each case. Only the most important equations are included,
and these are grouped in an orderly fashion in the appendixes. The rotating
coordinate systems are considered in Appendix I, and the planetary variables
are considered in Appendix II. For a more detailed account of the application
of the aforementioned equations the reader is referred to Ref. 2 wherein a
specific case is treated in detail.

Synthesis of the Optimal Controls

In order to put the equations for the optimized controls into a form
compatible with guidance requirements, several changes are made. First, T
in the control equations is replaced by -7. That is, the equations are
rewritten with "time-to-go" as the independent variable. Secondly, while in
the ordinary transfer and rendezvous analyses in rotating coordinates it was
generally convenient to assume zero initial conditions, the terminals are
reversed in the control synthesis. That is, the target orbit is assumed to
be defined by zero values in most of the state variables. The results of
the control synthesis are expressed in terms of the guidance coefficients,
aAJ/axi, of each component of the control vector, A.

The equations for the control synthesis are summarized in Appendix III
for transfer and rendezvous in each of the coordinate systems. Those equa-
tions which deal specifically with transfer between circular orbits have
been presented previously in Ref. 3.
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RESULTS

Orbit Transfer and Rendezvous

The multiplicity of solutions generated in this study (particularly for
rendezvous ) precludes a graphical presentation of all the resulting tra-
jectories. An attempt is made to summarize the results in a reasonably con-
cise form with orbit transfer solutions represented as special cases of
rendezvous wherever feasible.

To simplify the presentation of the results, only circle-to-circle
transfer and rendezvous cases are examined in the summary curves of Figs. 3
through 13. The first set of plots, Figs. 3 through 5, shows the variation
of the components of the optimal thrust acceleration with time for circle-to-
circle transfer only.

The in-plane components Ax/yf and A,/yf are seen to display symmetry
about the midpoint in time for all trip times, as does the out-of-plane com-
ponent Az/roi. In particular, when T, = 2nm, the components A,/y, and A,/yf
are constant with time, and the latter is zero. For the coplanar problem,
constant circumferential thrust acceleration is thereby specified as the
optimum mode for integral multiples of the period of the reference orbit,

a result that is in agreement with Ref. T.

gures § uitrougn O show the thrust acceleration components for circle-
to-circle rendezvous at a particular trip time equal to one sixth of an
orbital period of the reference orbit. The parameter in Figs. 6 and T is
x,/&,T, which takes on the value of 3/h for the special case of optimum
transfer. Similarly the out-of-plane component is plotted with Q, as a
parameter. As indicated, the longitude of the node can have either of two
values, 150 or 330 deg, for optimum transfer.

The payoff, J, can be best represented as the sum of three components,
Jy, Jo, and J,, which are defined by Egs. (A-4L)and(A-45) and are plotted in
Figs. 9 through 11. The components J, and J; define propellant requirements
for coplanar rendezvous, while the addition of Jz introduces the out-of-plane
requirement. In particular J is equal to J, for coplanar transfer since the
term x, /y,T, - 3/4 in J, is zero for optimum transfer.

All three components, as well as their sum, are seen to be monotonically
decreasing functions of T,. In the limit,as T, - ©, A and J - O. This is a
consequence of the fact that no 1imit has been placed on exhaust velocity.
Similarly all three components tend to infinity as T, approaches zero because
zero trip time requires infinite thrust acceleration.

An interesting feature of J; is evident from Fig. 1l. For T,=km,where
k=0,1,2, ..., J3 is the same for all nodal longitudes, Q,. For all other
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times the envelope of the family of curves is given by the equations

N 1
JSnax - Tf _ |sin 'Tt (8)
Jantn = L (9)

T, + Isin Tf|

where the lower envelope is given by Eq. (9) and represents Jg for optimum
transfer.

Choice of Reference Orbit

It has been observed that the linearized equations are applicable only
for orbits which are not separated by large radial distances. More specifi-
cally, excursions from the origin in the y direction should always be small.
It is apparent, however, that when the reference orbit is chosen to have the
same radius as the initial orbit the excursion, y, to the final orbit is
maximized. A better reference orbit would be one midway between the terminal
orbits since this device would guarantee a radial excursion no greater than
half the distance between the terminals.

Although for the most part, the equations of this report are based on a
reference orbit coincident with the initial orbit, Egs. (A-48) through (A-51)
and (A-131) through (A-134) are exceptions in this respect. These equations
are derived to account for an arbitrary choice of the reference orbit and may
therefore be applicable in cases where the ordinary equations break down.

Application to Planetary Orbits

Strictly speaking, none of the planetary orbits are "neighboring orbits"
in the sense in which this term has been defined. Earth's closest neighbor,
Venus, has a semi-major axis, a = 0.7T233AU compared with a = 1.0AU for earth,
leaving a separation distance of 0.276TAU which is not << 1.0AU. However,
using the improvement referred to above, it is possible to apply the linearized
analysis to earth-Venus and earth-Mars trajectories with remarkably good
accuracy. In Figs. 12 and 13, comparisons have been made with exact solutions
from Ref. 11, for earth-Venus and earth-Mars transfers. The circled points
were calculated from Eq. (A-48) of Appendix I using a reference orbit midway
between the two terminal orbits. These results for the special case of
uninclined, circular terminal orbits show only a slight discrepancy in J
for transfer times up to one earth year.
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Extension of the Linearized Theory

Based on the successful correlation indicated by Figs. 12 and 13, a new
theory is being considered in order to account for second-order effects in J.
This theory is a "piecewise-linear" analysis which may be described as follows:
The transfer (or rendezvous) is divided into two steps, each requiring a
portion of the total trip time. The first segment of the trajectory consists
of a rendezvous from the initial orbit to an intermediate orbit of unspecified
size and shape, and the second segment i1s a rendezvous from this intermediate
orbit to the final terminal orbit. The expression for J is composed of two
linear expressions for the two segments, and the parameters of the intermediate
orbit are considered as variables which may be optimized so as to minimize the
total J. In each segment an appropriate reference orbit is chosen so as to
improve the accuracy of the theory.

This approach should provide better results than the linearized theory.
Since the results for earth-Mars and earth-Venus transfers were already good,
the piecewise-linear theory may approach exact results in these cases and
might even yield acceptable results for trajectories to the outer planets.

Control Synthesis

In this study it has been possible to express each of the components of
the optimal control vector, A, as a linear function of tht i siaule variables.

n

Ay =% oAy Xy (10)
. Bxi
i=1

Therefore, the presentation of the results can be confined to curves of the
guidance coefficients, BAJ/B'Xi plotted against time to go, T'. Using the
equations for the guidance coefficients which comprise Appendix ILI, the
summary curves of Figs. 14 through 25 were generated.

The synthesized controls for the case of transfer between an arbitrary
state and a nearby circular orbit appear in Figs. 14 through 16 in terms of
the rotating coordinate system variables. The extension to include eccentricity
of the final orbit is provided by use of the Lagrange planetary variables in
Figs. 17 through 19.

For rendezvous the same procedure is followed in the presentation of the
synthesized controls, with the addition of curves to account for the dependence
of in-plane thrust acceleration components on the circumferential distance.

In rotating coordinates, Figs. 20 through 22 summarize the results for rendezvous
between any initial state and a point on a nearby circular orbit.
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As in the transfer case, the planetary variables facilitate the extension
to rendezvous between an initial state and a point on a nearby orbit of low
eccentricity. The results for the planetary variables appear in Figs. 23
through 25.

A1l the curves for the guldance coefficients display similar behavior.
When time-to-go is short, the curves diverge to infinity (either positive
or negative), but a damped oscillation is evident, causing the coefficients
to approach zero for very long times.

10
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LIST OF SYMBOLS

-IT; Thrust-to-mass ratio
S

(o
C Integration constant
f Rate of change of a state variable
F Fundamental function
J Defined by Eq. (2)
D Defined by Eq. (A-154)
B Defined by Eq. (A-182)
Q Defined by Eq. (A-181)
% Defined by Eq. (A-146)
A Lagrange multiplier
r Radius
R Radial force
W Normal force
S Circumferential force
n Mean angular motion
X, ¥, 2 Position components in spherical system
x', y', z' Position components in rectangular system
u, v, w Velocity components in x, y, 2z, directions
t _ Time
T not
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LIST OF SYMBOLS
(contd.)
T' Time to go
m True anomaly
w Longitude of peri-apsis
e Eccentricity
N Unit vector normal to instantaneous transfer orbit
a Semi~-ma jor axis
Q Longitude of the node
i Inclination
X a/aO
Xp e sin w
Xa e cos w
X5 sin i sin 0
Xe sin i cos Q
P Angular momentum vector

Subscripts

i Index denoting x, y, z, u, v, W
J Index denoting x, y, z

o Initial condition

r Final condition

X,¥,z,u,v,w Denoting state variable
I Intermediate reference orbit

R Radial

13
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5
W

Superscripts

*

LIST OF SYMBOLS
(contd.)

Circumferential

Normal

Optimum condition

Denotes a vector
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APPENDIX I

ROTATING RECTANGULAR AND SPHERICAL COORDINATE SYSTEMS

1. Eguations of State

(A-1)

LIRS
dr (A-2)
%ff v (A-3)
Ay (a-k)
A3y -2 (a-5)
—g%- = A -z (4-6)

2. Fuler-Lagrange Equations

Ay =0 (a-7)
X, =-3X, (A-8)
X: = Ao (4-9)
Xy = =Mt 2), | (A-10)
Xy = =Aj— 2\, (A-11)
Xy = —Az (a-12)
Ao = foAx (a-13)
Av = noAy (A-1%)
M = NoA, (a-15)

15
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3. Integrated Fuler-Lagrange Equations

A = noCo (A-16)
Ay T —6n,(Cq+Cor —C,cosT + Cpsint ) (A-17)
Az = 2ny(Cgsint + C5cost) (A-18)
Ay = ng (3C4+ 3C,T - 4C, cosT + 4C, sinT) (4-19)
Ay = 2no(Co + C, sint + C,cost) (a-20)
Aw = 2n,(CgcosT - Cj sint ) (a-21)
4. Boundary Conditions
Transfer Rendezvous
State Variable r =0 T=Ty vt =0 T=T,
X 0 FREE 0 X¢
y Y Yy Y vt
z o z4 0 z
u 0 _32_ yf(I) o %yf(”
v o} (o] o} o}
(2) (2)
w o /'oziz_zfz o /roziz_z'z
5. Integrated Equations of State (with initial conditions)
x = [ 16(r — sint ) - %r’]c, + [IG(I-cosr) - 10t sinr]c,
o (A-22)
+ [22sinr -~ |Orcost -IZr]Cz - [-2- % —12(1-cost )]C.
y = [B(I-cosr)-3rz]C°+ 5[sinr - roosr]c,+ [Srsinr -8(I-cosr)]cz
(4-23)
+ 6[sinr —r] Ce
(1) REF 6
(2) REF 5

16
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~
"

c
"

['r cosT — sinr]c, + [r sinr] Cs

9

I6(1-~cost) ~ r? Co +|6sinT - I0TcosT| C,
Z

+ [IOr sint —12(1- cosr)]Cz + [I2 sinr-9r] Cs

<
(1]

[Bsinr-6r] Co + [Sr sinr] C + [ 5t cost - 3sinr]Cz

+ 3[! —cosr]C.

[-rsinr] Cy + [sinr + T cosr]C,

Transversality Conditions - Transfer

A, = Co = 0
ok
_Ci- mm',+—E
Cs l—zﬁtonr,
]

Constants of Integration - Transfer

Y¢ sin Ts

16(1-cost) - 7 (51¢ + 3sinty)

—ys (I —costy)

1601 = cos7y) = 1Sty + 3sint,)

(sinty + 7 costy )z, ~ (TysinTy )/ roz i2- z,z

2 . 2

iT

(a-2k4)"

(a-25)

(A-26)

(a-27)

(a-28)

(4-29)
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C. = %1(51',+ 3sint )
. 16 (1 = costy) - 7;(57y + 3sing)
Rendezvous
7] y,(% - -%-) (St — 3sint)
C, :

%r, (5% — 3singNy,® - 80) + 4(1- cosg ) 7ir°—64) + 2487, *cost,

Yy SINT, 3sinty — B(1-costy)
C = - + Co
16(1~costy) ~ (571 + 3sintg ) Sty ~ 3sinty

c. = -y,(l—cosrf) 3{1 + cosy) - BsinT,

2 16(1 - costy) - 7,( S5ty + 3sinz) * G 5ty — 3sint,
c (sinty + Tycosg) zg — (TgsinTy) s/r,‘,zlz-z,2

y .

c . & (57+ 3sing) e

¢ 16(1 = costy) = 7(Sty + 3sinty) ° 2

C. = (ysingg)zy + (Geosty — singy) \/r‘,ziz - z,z

s

(v - sinz'r,)

8. Controls

Ay = 3C4+ 3C,t — 4C,cost + 4Cysint

18

(a-33)

(A-34)

(4-35)

(A-36)

(A-37)

(A-38)

(A-39)

(A-40)



C-910098-12
Ay= 2 [Co + C, sint + C, cosT ] (A-41)
A, = 2 [Cs cost - C,sinr]
(A-k2)
9. Payoff
Transfer
¥t \2 . 2
J (—'o-) (S%+ 3sing) i
Mo for 8[r,(5r,+ 3sint,) - IG(I-oosr,)] Ty +isinty) (a-143)
Rendezvous
J ¥y \2 Y2 x 3\
= (=t +J—L(-—-—)+ it -
nosroz ‘( r° ) 2( G ) Ye Ty 4 Js‘ (A M)
2 .
S ) (—2) (57 + 3sinty)
3 2 .
No fo s[r, (Sty + 3sing) - 1601 - cosr,)] (A-45)
Wy & _ 3¢ ,
. - (To—) ( el ) (57— 3sing)

%— % (57 — 3sint )(r,z— 80)+ 4(! - cosr,)(’rlr,z— 64) + 2481:,2 cos Ty

+ ;2 [ T — sinty cos(2.0.,+r,)]

10. It should be pointed out that for each free end condition in the case of
orbit transfer, the variational analysis predicts an optimum value for that
particular state variable at the end point. In the rotating coordinate systems
the x and z coordinates are left open at final time, T,. The end point for
the optimal transfer is then determined in the analysis and is defined by the
equations.
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(_;'L )* - 73‘ K (A-4T)

11. Payoff Equations with an Intermediate Reference Orbit

Let the origin revolve in a circular orbit of radius r; between the two
terminal orbits such that the radial distance to the outer orbit is r,;-ry
and the radial distance to the inner orbit is ry-rg. The radii r, and r,
refer to the inner and outer orbits, respectively.

Transfer
I -1 42 . 2
J -8_(J_rf') (57 + 3sint,) i
5.2 ° , + , (A-48)
nory T (57 + 3sintg) — 16(1 - costy) 7y + | sintgl
Rendezvous
AT .
J i —§-( - ) (57,+ 3sint; )
n:[srl2 T (57 + 3sing ) — 16 (1 - cosTy )
2 2
T4 Xf 3 ri+1o an
N '? { :;_E - g ( "_[ —2)} (5Tf 3$lan)
% 7 (57 — 3sinrf)(rf2—80)+ 4( | —cos X?l'rf2 -64) + 248rf2 cos 7¢
(A-49)
L 72— sint; cos( 2§, +73)
|

2 .2
Ty —sin" T

20
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12. Optimal Transfer Coordinates

PN N
H-& |_“N Hﬂ I_“)(
~— ~——
x *
1} (1]

21
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APPENDIX II

LAGRANGE'S VARIABLES

In the theory of special perturbations, as derived in Ref. 8 for example,
the equations for rates of change of the elements of an elliptic orbit are
written in terms of the elements and acceleration components S, R, and W,
which are perpendicular to the radius vector, radial and normal to the orbital
plane, respectively.

Consider the five elements, a, e, 1, w, Q. The equations for small rates
of change of these variables are

T ' (a-52)
2 —5—=—= ] eRsinm + S(I + ecosqy)
Tl L 7]
fi— o2 2
de | -e? ) 2cosn + e + ecosy
di Ji-e?
d; = l noe W cos(w +7) (A-54)
dw - Vi -e? 2+ecos-r;s ) e'on—'z-sin(w-l--q) ]
dat noe [—Rcos'r, + | +ecos?n SN {t+ecosn (A-55)
?,',Q = In-oez s Sin(w+7)
(a-56)

In order to avoid singularities for zero eccentricity and inclination in
Egs. (A-55) and (A-56) these equations may be transformed according to the
following definitions:

X2 = e sinw

(A-5T7)
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(a-58)
Xy = e cosw
Xy = sini sinfd (84-59)
x¢ = sini cos{)
(A-60)
Under the assumptions
e << |
Q= g,
n = n, (A-61)
T = not 2 w4 1'
t €< |
R S W
Ag = —=F  Ags — . Ay = —x (a-62)
R T No s Qo No w O No
and with the further definitions
X = l (A-63)
| 0,
o F X (A-64)

the equations of state for the variational problem may be derived from Egs.

(A-52) through (A-60).

There is a direet equivalence between these equations and the equations
of state in the rotating coordinate system variables. That is, each of the
Lagrange variables X;, Xz, Xz, ..., X, Can be expressed in terms of the
rotating coordinate variables, x, ¥y, 2z, u, Vv, and w.

Referring to Fig. 26, define a position vector T in nonrotating
coordinates originating at the center of attraction F. Assume the motion

out of the reference plane is uncoupled from the in-plane motion.

Relative to a rotating rectangular coordinate system originating at O
and rotating with angular velocity 1 this vector is
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r = xi + (r°+y)-j. (a-65)

where the unit vectors T and j are taken in the x and y directions, respectively.
The vector velocity V is obtained by differentiating r.

V = 57 = ui + vj + axr (A-66)
Since 5 = noi, the expression for V is
vV = [u-no(ro-t-y)]‘i. +(v+n°x)'i (A-67)

Using Eqs. (A-65) and (A-67), expressions can be written for the angular
momentum C, the path speed V and the radius r of the vehicle

E = TV = [ x{v+nex) - (r°+y)(u—n°(r°+y))] * (a-68)
v =/ V.V = ,\/[u- ne( r,,+y)]2 + [v + ngx ]z (A-69)
2/ TeT = SxB (et Y (a-70)

The following equations can be written for the angular momentum, speed,and
radius of a body in an inverse square field.

ICI = JKall-e? (A-T1)
v = /-ty s G ® (a-72)
ali —e?)
s S -€ ! A~
r l+ecos?n (A-73)
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Combining these equations with the absolute value of 6, and with V and r
from Eqs. (A-68), (A-69), and (A-70),the following scalar equations result.

Q
@ (|+-}’;)(|+ecosn) (A-T4)

b : “/— (a-75)

o - (1)
-]

Mo T L
A
Nk jecesn (a-T6)
n,r. I,
o0 (] °°
Finally, noting that
a - - : =
e - Moo % Gesitw , xy = ecosw
(A-TT)
ecosm = ecos{r-w) = «x, sint + xgco8T
the equations relating the coordinates are obtained.
% = (%, = 1) = %, 8inT —xyC08T (A-78)
'nﬁ T Xy COST = X, SinT (4-79)
%Fo = %( x, = 1) —2x, SNT — 2x4C08T (a-80)

The components of the out-of-plane motion can be related in the following
wvay. If N is a unit vector normal to the instantaneous transfer orbit and s
is a unit vector in the direction of the line of nodes, then

—
S

= }\T XT (A-Bl)

and, since the angle between s and the vehicle is T - Q,
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cos(T-8) = s « 1

Also, the orbital inclination is

COSi=N.'T

Using these parameters the equation for the elevation, z, of the probe is

-'Eo- = toni sin(t ~81) & sini sin(t -8)

or

4 .
—';' 2 = %XgCOST <+ xgSinT

The out-of-plane velocity, w, is

w .
E?o S XgsSinT + xg COST
l. ZF¥quations of State
dx,
dr = 2As
dx, .
ar ZASSII'\T ~ Ag cosT
dxy .
~g¢ ° @Agcost + Ag sint
dx, 3 .
i -é-(x,-l)-szsmr — 2x4COST
der"’- = —Aysint
dxg
—8 = T
3T Ay cos
26

(a-82)

(a-83)

(a-84)

(a-85)

(a-86)

(4-87)

(a-88)

(a-89)

(A-90)

(a-91)

(A-92)
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2. EBuler-Lagrange Equations

Xl = - -2- X‘
Xp = 2\gsinT
Xy = 2A4c0sT

noAg = 2(X\ +Xzsint +XAgcost )
NoAR ==X, cost + A, sinT

3. Integrated Fuler-Lagrange Equations

?\z = Apo —2Ag4 COST
A3 = Agg +2X4 sinT
Ae = CONSTANT
Ag = "

Xe = "

4. Boundary Conditions

(a-93)

(A-9k)

(A-95)

(A-96)

(A-97)

(A-98)

(A-99)

(A-100)

(A-101)

(a-102)

(a-103)

(A~10k)

(A-105)

A great simplification in the complexity of the equations can be achieved
by taking advantage of the symmetry afforded by the Lagrange variables X and

27



!

C-910098-12

Xz. Therefore, in performing the integrations it will be convenient to use
limits -7,/2 to T, /2 for the "in-plane" state variables.

Transfer Rendezvous
S“‘b'ate Vari:‘a;ble r=-1 r=0 r=_0 r =0
in-plane") 2 2 2 2
X, | Ax|f+ | | Ax.f + |
X2 X20 lz°+ Alz, X20 lzo + Alaf
X3 X390 X30 + D x5, X390 X3o +Dxy,
Xe X40 FREE Xe0 Xeo +8%,,
(out-of-plane) r=0 TT, =0 T=T,
Xy 0 Xg, 0 Xg,
Xg 0 Xef 0 u‘f

5. Integrated Equations of State (with initial conditions)

2
Ox, = Arg(T + IZL } = 4X,olcosT - cos zzf-) + aXy{ sinT + sin%-) — 312~ %—) (A-106)
.IL )\20[ T¢ . sin T4 ]
Axy; = = 4hg5(cosT- cos 2 ) + < | Sir+ ?)— 3(sinT cosT+ > )
(a-107)
+ —3—)\ ( sinr — sinzr—')—2x4[4( int + sin-t- ) — 3(rcost + E—cos-ﬁ-)]
Bxy = AN fsinT +sin ) + 3 Ay(sin®r —sin? & )
3 0 2 2 2 (A-108)
A T, sinT,
i =1
+ —239[5(r+ —af-) + 3(sint cosT +— )]
cosTy 3 oo 2
2\ ateost - )+ 307 cost + 3 cos 2]
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Ax, = )\,o{ 3(r+

2

E)z--Bh[I-cos(t'+-r2'-)]}

+x2°{(r +% )[5cosr+ Gcosi] -3 sin(T + L) — —'22 sinT -Bsin%}

+x,°{(r+ —g- ) [

GsinrL - SsinT ]+ 3 cos{t +

2 2 2

T, 19

L
- > cost +8cos 2}

2 2 2

L - 5 OV L 2 (Y. 33
+Xs {as(r+-21)—6r,[| oos(r+—2'-)] +3(3) +57(F)-3 3}
+ szo[oosr - cos—g—] - wa[sinr+ sinr—é]
A A
xg = —52 (T - sint cost) — -?6 sin’r
A A
xg = — -—23 sin’t + -29 (Tt + sinTcost )
6. Transversality Conditions - Transfer
Ae = O
-8 : tant
(3
T. Constants of Integration
Transfer

Ax T

(57 + 3sinty) — 4Bxy sin
Ain = L
0 T, (57 + 3sinty) = 16( 1= costy)

2 Oxyp,
Azo ® 57, — 3sinTy
Z[I;Axy— 2hxy sin%]

Ayo=

ff ( 51" + 3Sinff) - lG( | -COS!‘,)

29

(A-109)

(A-110)

(A-111)

(aA-112)

(a-113)

(A-114)

(A-115)

(A-116)
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Rendezvous

Ao =

Ne

Ao =

As

xgq ( T+ singcosT) + xgq sinr,

f

2(1‘,2— sinzr,)

LY (5t + 3sinty) — a8 xysin 3

T ( Ste+ 3sing ) - 16(1 - costy)

T (57— 3siny) (3 T2+ 1)~ 2 (Bsin F-37ycos

+ sz,[% r,’+ 8% — 37l -costy) - Bsinrf]

T, T
- [Sr,cos-z'- - Bsin-zf-] [ZA:(,,sin—;t + Axge + 4stinfé'- ]]

Ago =

Z[r, Axyy - 28%,sin -;'- ]

T (57 + 3sing) - 16(1- costy)

% (57 — 3sing) (l% T+ - 2(Bsin% = 37%cos -g )2

a
- —E-‘z-![llr,cosg— + 3sin-g- (1-cosg) - 225in%—]

+ (57 3sinmy)

Oxgy

%

a
—2—sin§- + =

4

Z{xa (7 + sinT; cosr,) + xg sinzt‘f

}

+x,°sin-;1]]

2i [T, sinfd, + sint, sin(ﬂ,-i-rf)]

(a-117)

(A-118)

3 b .
T, LTr,Ax,,(Sr, cos 5 -8sin -2'-)
2

(A-119)

(A-120)

[— % LA x (5t~ 3sing)

2
Ty

.2
- sin“T

. 2 .
2{"5: Sin"Ty + xg (1 — sinT, cosr,)}

2
T

2i [ 7, cos {2, — sint cos(f+7,) ]

- ein?
sSin T

T¢

2

. 2
= sin T'

30

2
Ty

- H z
sin" 7,

(A-121)

(A-122)

(A-123)
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8. Controls

Mo Ag = 2X10 = 3AqT + 2A0SinT + 2Ayg COST (A-124)
NoAR = 2Xq = ApgCOST + Ay sinT
(A-125)
noAy = = Ag SinT + AgcosT
(A-126)
9. Payoff
Transfer
Ax 2 NOTE: (1)
n
J i —ga— (574 + 3sinyy) -4 Dxye Axsfsm 2 + 7 Axsf N Afoz
ndrl2 Ty ( 574 + 3sintg) ~ 16 (| — cosTy) 514 ~3sintg (4-227)
2
Tf+ 'Siﬂffl
Rendezvous
ox 2 2
J L (57, + 3sint) - 4 Axyy Dxyg sin— 2 + T Axyy
No>ro? ) T (57, + 3sint) — 16( 1~ cos7y)
1 . ){ n _ }
& (5% - 3siny Zsz,cos-é- - 2Ax3,sm 7 ~ Drg+ 2 r,Ax., 4x,°sm (-128)
T (57 - 3sinT, )( r, +1)- 2(31',cos—2- - esin-ai N

_’—sz,(Bt;cos—zt —Bsm—t){Zszfoos 5 - 28 %y sin 5 2 —Dxg + 3 L -4‘3055-.%‘ }
Ty( Sy - SSmrf)( T 2+1) - 2(3r,oos—é- es.n..f.)

2
Ty Oxgy (Er, +1)

3 2 T . Ty 2
T, (57, - 3slm‘,)(Erf +I)—2(3r,cos—-2t - Bsm—af-)

" Ty — sinf cos( 28y +1y)
-+ ] ( L] 2
T =sin®1)

NOTE: (1) The second term of this equation is incorrect in Ref. 1.

31



C-910098-12

10. The optimal values for changes in the state variables x, and {2 are pre-
dicted by the variational analysis in the case of orbit transfer where the
values x, and Q are left open at the final time.

T T,
1_\x4‘“r = —43- T OAxe — 24 x3fsin—2f- - 4X3°Sin'§f

4Ax2' | Tt . L) LT (A-l29)
51_'_35““_'{ 5 008 2(5'1’,- 3sinTy)+ 37,08 > 8sin 2}

* _ T
Q" = or - (A-130)

11. Payoff Equations with an Intermediate Reference Orbit

Transfer

2
J —A-%LL(SI}-F 3sinTg) — 4 Ax,; Axyg sin—g- + T Dxyt Dxye?
3

Nty Ty (5T + 3sin) — 16(1 - cosTy) 57— 3sinT

2 (A-131)

T, +|sinrf|

Rendezvous

AX|f R 2
J ) 8 (S, + 3sint, ) - 4 Ax,y Dxy sin 2 + T D

nI3r12 ) T( S+ 3sin) — 16(1 - cosy)

—‘-(5r-3sinr){2Ax cosE—ZA int — A +-§-r( + X =2 ) = Qxqnsi -r—'}z
+ 8 § t 2f 5 X3¢ SIN > X4f 3 t\ Xp T X¢ 30SIN 2

T
T (57— 3sinG) ( —= |6 T 241) - 2(3r,cos > —Bsm—é-

Oxg( 37y cos$ - 8sm 1) {2 Dxy cOS ? - 2 Oxy sm-z— - Oxg + -—rf( X+ Xy — 2 ) —4xyesin f}

+
Ty (5% - 3sing)( Té’fz’“’ - 2(3Tfoos%—85in%)z
2
Ty Dxyy (I3GT' +1)
+

. 3 2
7 (57 = 3sint ) qe 724 1) - 2(37¢ cos o+ - BsinF-)

2

Tf 2_ sin Ty (A-l32)
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12. Optimal Transfer Coordinates

T T

Ax4‘ = %Tf( X|o+ x" - 2 ) - ZAxsf Sin 2f - 4xsosin 2f

4 Bxy { |

+ e —————————
57 — 3sinTy

2 2 2

33

- cosrf- (57— 3sint,) + 37, cos 2 —Bsin:f-}

(A-133)
2

(A-134)
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APPENDIX ITI

SYNTHESIS OF THE OPTIMAL CONTROLS

A. Rotating Coordinates

-

+. Control Eguations

oA oA oA oA
y y y y (A-135)
A -
SR VI PR Wl B v
OA, OA, oA, 0A,
Ay, = Wy-‘-wu +_av—v +_d—l.l (A'136)
A = 0A, - 0A,
t 9 TN o (4-137)
2. Guidance Coefficients - Transfer
0A, 27 . .
3y = ) (1 =cost)(29 - 27cosT') (4-138)
oA 24
—L = —— (1 - cos?) (isint - 37 cost* ~ B7') (A-139)
du e}
oA 12
3 L - (5T + 3¢ sint’ cost' - 8 sin2r' ) (A-1%0)
v o
—a;l- z -'c—g- [ 70t'sint' —557t2 + (87 sint* cosT'+ 3(] — cosT )5 - 27cosr‘)] (A-141)
y
©
ZA' z ry [651"2 - 80t sint* — 247 sint' cosT'—(| - cosT'){ 25~ i03 oosr')] (A-142)
u
(
o:' z - % (87 ~ Il sint' + 3rcosT )( 1| ~ cost’) (A-143)
v

oA, o

Wnote: S . 2

34
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0A,
9z
0A,
ow
where

-2 sin“t* (A-lhh)
r.z - sinzr'

~(27'-sin27)

t® - ginfr! (A-145)

@ =480T — 7572 — 240T'cosT’ (| + cosT') — 144 sint'( | = cosT’) — 2137’ sin®r

3. Rendezvous

(A-1k46)

Due to the length and complexity of the synthesized, in-plane, control
equations for rendezvous, the guidance coefficients are not written explicitly

here.

Instead the basic equations are tabulated, and the coefficients calculated

from these equations are plotted in Figs. 20 through 22.

A, o _ 5 %o , ac, i a X2 ., A-1k
ax, 3-6:- 3-3‘7‘!‘ - 4T;msr—43;;scnr ( 7)
0A, _ ac, oc, . . 9C,
ox; 2( ax, o, VY °°"') (A-148)
0A, 0A,
A = oz ow (A-149)
X 4, ¢ Pa o * P Pa
C. - y $a b0 Pog c = P Y b Po
N Py P Pa ) b0 b2 Paq
v Py Paz P %0V $az  Paa
0 (a-150) ° (a-151)
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%0 P x P
c, $20 P y $2a
P Py U Pse
4’40 ¢40 v ¢44
0 (A-152)
where
¢oo
D= i
Pao
Po
and
b0 = 73- t® - 81" + Bsinr’
¢y = 8(i~cosr)-5r'sinr
$p = Srcosr' - |Isint' + 67
Pe = 6(|-C0§T')-%r‘2
Ho = ‘is(l-t:ost")--%f‘2
b, = ?[r'cosr' - sinr']
o, = % TSinT — 4 (1 — cosT)
P = 3 (T = sinTY)

36

b0 P P2 X
o[t tu dm
Po Py Py U
Poo Pu Paz Vv
° (A-153)
¢|z Pra
P2 Poa
Pz Paa
b i
(A-154)
$Ps0 = B8(i—cost') - -95- r'?
¢y = St'cost’ - 3sint'
Py, = 57'sint’ — 6(1-cost)
Puy = -g-r' - 6 sint'
P40 = 3T - dsint’ (a-155)
by = % v'sint!
Pq2 = -%— sinT' - —g—-r'cosr‘

Peq = =31 = cosT)
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Mz _ -2 Siﬂz‘l"
oz T2 — ginire
0A; _ -(27'- sin2r7)
ow 2 - sin®r*
B. Lagrange Variables
1. Control Equations
dAR OAR MR aAR aAR
Ag = 3-&‘—' x, + ——anz Ax, + —dAn,A" + _dAx,A“ + ———a‘”xw

_ 0 OAg OAg OAg OAg
Ag = a—A—‘-.Al‘ +E_x2 Ax, +-£;-3 Axs-i-B—Ax‘Al‘ + -3;;0!30

2. Guidance Coefficients - Transfer

dAg — 4 sint: sin -E-

dAx;, (57t + Isint’) = 16(1-cosT)

GAR _ Zcos Tt
dlAx, Stv'— 3sint’
0Aq 2tsint’

0Qxy A5t + 3sint') - 16(1 ~ cosT')

6As 8 cosT'sin -51 - %(5? + 3sinT)

3bx, - BT +3sint) - 161 —cosT')

OAg 4 sint'

dbx,  St'=3sinr'

37

(A-156)

(A-157)

(A-158)

(4-159)

(A-160)

(A-161)

(a-162)

(A-163)

(A-164)

(A-165)
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6Aw _ cosT sin?t' (A-166)

0lxg v'2- sin’r!

JAw - lf cosT({ 27" sin27)

R — (A-167)
dlxg 2 - sinr
0Ag 4(2sin -‘2'-'- Teost')
aAxs 50+ 3sint) - 16( | ~cos ™ (A-168)
3. Guidance Coefficients - Rendezvous
0Aq ] 4 sint'sin -; _ %r{ 5t - 3sint'+ 2cost!( 3r'oosIZ: - 8sin i]
o, @ B (a-169)

0Ag 2t'cost( % ™+ 1)+ cos T;: (57'- 3sint') + 2(3r'cosré-. - Bsin%.)(l+cosr'eos-g)

d0Ax, 8 (a-170)
0AR . " 2osint + sin-%' [Sr- ~3sinT'+ 2cosT( 37 cos-%' - Bsin % )] (a-171)
dAx Q
3 B
oA L [Sr‘— 3sint'+ 2cost'( 3r'cos = — Bsin & )]
R._2 2 2 (A-172)
aA“— B
0Ag 2 sin & [ 5t'—3sint' + 2cost{ 3T'0s & — Bsin% )]
. 2 2 2
Oxgy B (A-173)
OAg i '? (57" + 3sint'~16 sin-‘zz cos ')
0Ax, Q . ,
%r‘[ 3t{St'— 3sint) + Bsinty 3r'cos% —Bsin-;— )] (A-1Th)
- B
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dag

3

4r'sinty % 2 41) + 5 r'cos%'( 5t — 3sint)

0Ax, :

0As  4(t'cost’ - 2sin L)

rl

+

B
(3r'cos > 8 sin % W3+ 4sinr'cos—;-')

2

dBxy

oA
0Qx,

dAg

ax,o

Olx g -

Ay

0lx,

where

Q

B

-+~

2

39

Q ? (] ¢
—'é- sin -’2;[ 3v (57— 3sinT") + B8sin™ 31"00512'- - Bsin%- )]
B
—‘—[ 3r(57'-3sint') + 8sinT 3r'cosl' — 8sin 1")]
_ 4 2 2
8
sin 1'[ 3r{5t'- 3sinT') + 8sint| 3r'cos L - Bsin r )]
2 2 2
B8
2sint(t' + sin27)
- sin? ¢
4 [sinr' + cos (T — sin 2r')]
- sinzr'
16(1~cost) - {57 + 3sint")
(57 - Isint')( -l% +1) - 2( Bs'ml' - 3,.-“5%' )2

(A-175)

(A-176)

(A-17T)

(A-178)

(A-179)

(A-180)

(A-181)

(a-182)
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RECTANGULAR COORDINATE SYSTEM

MOTION IS CONFINED
TO SPHERE

REFERENCE ORBIT

TARGET ORBIT
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FIG.1
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SPHERICAL COORDINATE

MOTION IS CONFINED
TO TORUS
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SYSTEM

FIG.2
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RADIAL ACCELERATION

CIRCLE-TO-CIRCLE TRANSFER
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